645 research outputs found

    A Trinomial Analogue of Bailey's Lemma and N=2 Superconformal Invariance

    Full text link
    We propose and prove a trinomial version of the celebrated Bailey's lemma. As an application we obtain new fermionic representations for characters of some unitary as well as nonunitary models of N = 2 superconformal field theory (SCFT). We also establish interesting relations between N = 1 and N = 2 models of SCFT with central charges (3/2)(1−2(2−4ν)2/2(4ν))(3/2)( 1 -{2(2 - 4\nu)^2}/{2(4\nu)}) and 3(1−2/4ν)3(1 - 2/{4\nu}). A number of new mock theta function identities are derived.Comment: Reference and note adde

    A double bounded key identity for Goellnitz's (big) partition theorem

    Full text link
    Given integers i,j,k,L,M, we establish a new double bounded q-series identity from which the three parameter (i,j,k) key identity of Alladi-Andrews-Gordon for Goellnitz's (big) theorem follows if L, M tend to infinity. When L = M, the identity yields a strong refinement of Goellnitz's theorem with a bound on the parts given by L. This is the first time a bounded version of Goellnitz's (big) theorem has been proved. This leads to new bounded versions of Jacobi's triple product identity for theta functions and other fundamental identities.Comment: 17 pages, to appear in Proceedings of Gainesville 1999 Conference on Symbolic Computation

    Bailey flows and Bose-Fermi identities for the conformal coset models (A1(1))N×(A1(1))N′/(A1(1))N+N′(A^{(1)}_1)_N\times (A^{(1)}_1)_{N'}/(A^{(1)}_1)_{N+N'}

    Full text link
    We use the recently established higher-level Bailey lemma and Bose-Fermi polynomial identities for the minimal models M(p,p′)M(p,p') to demonstrate the existence of a Bailey flow from M(p,p′)M(p,p') to the coset models (A1(1))N×(A1(1))N′/(A1(1))N+N′(A^{(1)}_1)_N\times (A^{(1)}_1)_{N'}/(A^{(1)}_1)_{N+N'} where NN is a positive integer and N′N' is fractional, and to obtain Bose-Fermi identities for these models. The fermionic side of these identities is expressed in terms of the fractional-level Cartan matrix introduced in the study of M(p,p′)M(p,p'). Relations between Bailey and renormalization group flow are discussed.Comment: 28 pages, AMS-Latex, two references adde
    • …
    corecore